RAMAKRISHNA MISSION VIDYAMANDIRA (Residential Autonomous College affiliated to University of Calcutta) B.Sc. FOURTH SEMESTER TAKE-HOME TEST/ASSIGNMENT, AUGUST 2021 SECOND YEAR [BATCH 2019-22]

Date : 07/08/2021Time : 11am - 1pm MATHEMATICS Paper MACT 8

Full Marks : 50

Instructions to the Candidates

- Write your College Roll No, Year, Subject & Paper Number on the top of the Answer Script.
- Write your Name, College Roll No, Year, Subject & Paper Number on the text box of your e-mail.
- Read the instructions given at the beginning of each group/unit carefully.
- Only handwritten (by blue/black pen) answer-scripts will be permitted.
- Try to answer all the questions of a single group/unit at the same place.
- All the pages of your answer scripts must be numbered serially by hand.
- In the last page of your answer-scripts, please mention the total number of pages written so that we can verify it with that of the scanned copy of the scripts sent by you.
- For an easy scanning of the answer scripts and also for getting better image, students are advised to write the answers in single side and they must give a minimum 1 inch margin at the left side of each paper.
- After the completion of the exam, scan the entire answer script by using Clear Scan: Indy Mobile App OR any other Scanner device and make a single PDF file (Named as your College Roll No) and send it to

Group A : Metric Spaces

Answer as many questions you can. Maximum you can obtain is 30 marks in group A.

- 1. (a) Define a metric 'd' on \mathbb{Q} such that each point of (\mathbb{Q}, d) is isolated. Give explanation. [4]
 - (b) Suppose A, B are closed in \mathbb{R} . Is $A + B = \{x + y : x \in A, y \in B\}$ closed in \mathbb{R} ? Justify. [3]
 - (c) Suppose A, B are closed in \mathbb{R} such that $A + B \subseteq [0, \infty)$. Is A + B closed in \mathbb{R} ? Justify. [5]
- (a) "Every bounded sequence has a convergent subsequence" Is it true in a metric space? Justify your answer.
 - (b) Let G be open in \mathbb{R} such that $0 \notin G$. Prove that $gG = \{gx : x \in G\}$ is open in $\mathbb{R}, \forall g \in G$. [3]
- 3. (a) Find a sequence $\{D_n\}$ of subsets of \mathbb{R} such that each D_n is countable and dense in \mathbb{R} but $\bigcap_{n=1}^{\infty} D_n$ is not dense in \mathbb{R} .
 - (b) Suppose 'd' is the discrete metric on \mathbb{R} . Is (\mathbb{R}, d) second countable? Justify.
- 4. Prove that the space l_{∞} is not separable. Is l_{∞} totally bounded? Give justification. [5+1]
- 5. (a) Let

$$A = \{(x, y) \in \mathbb{R}^2 : x \notin \mathbb{Q} \text{ or } y \notin \mathbb{Q}\}$$
$$B = \{(x, y) \in \mathbb{R}^2 : 0 \le x \le 1, y \in \mathbb{N}\} \text{ and}$$
$$C = \{(x, y) \in \mathbb{R}^2 : x^2 \le 4, 2 \le y^2 \le 4\}.$$

Justify whether A, B, C are compact in \mathbb{R}^2 .

- (b) Show that a connected metric space with at least two distinct points is uncountable.
- (c) Does there exist a set in \mathbb{R} such that BdA is connected?

 $\begin{bmatrix} 3 \end{bmatrix}$

[2]

[2]

Group B : Abstract Algebra III

Answer as many questions you can. Maximum you can obtain is 20 marks in group B.

- 6. (a) Which of the following groups can be written as direct product of proper subgroups and why? [6]
 i. Z₉, ii. Z₂₁, iii. D₄.
 - (b) Find the number of elements of order 3 in $\mathbb{Z}_9 \times \mathbb{Z}_3$. [4]
 - (c) What are the elements of finite order in $\mathbb{Z}_4 \times \mathbb{Z}$? Justify. [3]
- 7. (a) Suppose G is a nonabelian group of order 8. Find the order of Z(G). [3]
 - (b) If G is a group with exactly three subgroups then show that $o(G) = p^2$ for some prime p. [3]

[5]

(c) Prove that a group of order 90 is not simple.